我是小白呀的博客

私信 关注
我是小白呀
码龄1年

因为啥也不会, 默默做一只小白

  • 233,429
    被访问量
  • 472
    原创文章
  • 1,264
    作者排名
  • 1,966
    粉丝数量
  • 于 2020-02-05 加入CSDN
  • 入选《本周创作者榜》第52名
  • 入选《Python领域内容榜》第46名
获得成就
  • 博客专家认证
  • 获得1,372次点赞
  • 内容获得1,402次评论
  • 获得531次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #Python#NLP
TA的专栏
  • 我要拿 Python 炒股票, 然后惊呆所有人!
    27篇
  • 基础内容
    15篇
  • 实战讲解
    12篇
  • 手把手带你玩转深度学习
    12篇
  • Tensorflow 入门
    3篇
  • PyTorch 入门
    9篇
  • Pyhton 机器学习进阶
    31篇
  • Python 机器学习进阶第一节
    17篇
  • Python 机器学习进阶第二节
    11篇
  • Python 机器学习总结
    3篇
  • 我要偷偷学 Java, 然后惊呆所有人
    119篇
  • Java 基础第一节
    20篇
  • Java 基础第二节
    21篇
  • Java 基础第三节
    21篇
  • Java 基础第四节
    19篇
  • Java 基础第五节
    9篇
  • Java 网络第一节
    19篇
  • Java 网络第二节
    5篇
  • Java 数据库第一节
    7篇
  • Java 数据库第二节
  • Pyhton 数学加强
    19篇
  • Pyhton 数学加强第一节
    19篇
  • Python 机器学习基础
    62篇
  • Python 机器学习基础第一节
    10篇
  • Python 机器学习基础第二节
    6篇
  • Python 机器学习基础第三节
    19篇
  • Python 机器学习基础第四节
    9篇
  • Python 机器学习基础第五节
    10篇
  • Python 机器学习基础第六节
    8篇
  • 其他
    3篇
  • Linux 基础
    16篇
  • SEO 优化
    3篇
  • Python 数据结构
    41篇
  • Python 数据结构第一节
    7篇
  • Python 数据结构第二节
    6篇
  • Python 数据结构第三节
    9篇
  • Python 数据结构第四节
    4篇
  • Python 数据结构第五节
    9篇
  • Python 数据结构第六节
    6篇
  • Python 基础
    133篇
  • Python 基础第一节
    6篇
  • Python 基础第二节
    14篇
  • Python 基础第三节
    13篇
  • Python 基础第四节
    13篇
  • Python 基础第五节
    10篇
  • Python 基础第六节
    11篇
  • Python 基础第七节
    13篇
  • Python 基础第八节
    17篇
  • Python 基础第九节
    10篇
  • Python 基础第十节
    17篇
  • Python 基础第十一节
    9篇
  • 易语言 数据结构
    4篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

量化交易 策略评估指标计算

策略评估指标计算, 包括回测收益率, 回测年化收益率, 最大回撤, 夏普比率.
原创
1332阅读
90评论
59点赞
发布博客于 7 天前

量化交易 实战之双均线策略

Rice Quant 实现双均线策略, 使用投资研究分析和回测
原创
323阅读
56评论
39点赞
发布博客于 8 天前

量化交易 实战之金融时间序列分析 Part 2

实战之金融时间序列分析 Part2. 简述黄金交叉, 分析指标相关性.
原创
2191阅读
46评论
32点赞
发布博客于 9 天前

量化交易 实战之金融时间序列分析 Part 1

时间序列分析 (time series analysis) 是量化投资中的一门基本技术.
原创
2074阅读
44评论
29点赞
发布博客于 10 天前

量化交易 实战之回归法选股 part 2

实战之打分法选股 part 2概述代码效果概述继上一片的理论, 我们这次来进行一下回测, 看一下结果如何.代码# 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。import numpy as npimport pandas as pdfrom sklearn.linear_model import LinearRegression# 在这个方法中编写任何的初始化逻辑。context对象将会在你的算法策略的任何方法之间做传递。def init(co
原创
1558阅读
154评论
95点赞
发布博客于 24 天前

量化交易 实战之回归法选股 part 1

实战之回归法选股概述回归法选股流程步骤分析代码导包1. 准备日期数据2. 准备因子数据3. 获取价格4. 计算对应的收益率5. 填充因子收益率6. 特征值和目标值处理7. 建立回归方程概述回归法就是用过去的股票的收益率对多因子进行回归. 得到一个回归方程, 然后再把最新的因子值带入回归方程得到一个对未来股票收益的预判. 然后再以此为依据进行选股, 并对选股模型的有效性和收益率进行评价.回归法的优点是能够比较及时地调整股票对各个因子的敏感性也可以不同. 回归法的缺点则是容易受到极端值的影响. 在对因子敏
原创
4662阅读
84评论
52点赞
发布博客于 25 天前

量化交易 实战之打分法选股

实战之打分法选股经过筛选的因子打分法选股流程分析代码效果经过筛选的因子因子方向因子说明因子升序因子值越小越好, 市值, 市盈率, 市净率因子降序因子值越大越好, ROIC, inc_revenue 营业总收入和 inc_profit_before_tax 利润增长率打分法选股流程分析回测区间:2016-01-01 ~ 2021-01-01选股:选股因子: 6 个已知方向的因子选股权重:因子升序从小到大分 10 组, 第几组为所在组得分因子降序从大到
原创
498阅读
37评论
43点赞
发布博客于 26 天前

量化交易 回测阶段介绍

回测阶段介绍概述回测回测选股方法概述我们在之前的文章中简单的说了一下如何做因子选择. 本节我们将介绍一下如何结合筛选出来的多个因子来去选择某些股票.回测在丰富的数据后, 算法交易可以根据历史数据, 对未来收益有一个更好的估计. 通过历史数据去估计未来收益, 这样的过程称之为回测 (backtesting).回测选股方法多因子选股最常用的方法就是打分法和回归法. 至于这两种方法哪个个效果更好需要进行实际的墨迹交易或者实盘交易之后才能确定. 通常某你交易测试结果来说, 打分法效果更好.打分法选
原创
1123阅读
24评论
25点赞
发布博客于 26 天前

量化交易 实战之多因子合成

实战之多因子合成概述PCA 方法代码实现分析代码效果概述在多因子中, 我们希望通过多个因子的叠加来提高模型整体对于未来收益率的预测能力. 我们会把相关性高 (低) 的一些因子合成成一个因子.PCA 方法PAC (Principal Component Analysis) 是一种数学降维方法. 通过利用正交变换把一系列可能线性的变量转换为一组不相关的新变量.PCA 的用法:from sklearn.decomposition import PCAsklearn.decomposition.PC
原创
1080阅读
21评论
23点赞
发布博客于 27 天前

量化交易 实战之多因子相关性分析

实战之多因子相关性分析概述研报分析结果代码实现导包总资产回报率 IC资本回报率 IC计算相关性概述相关性 (Correlation) 在统计中是与独立性 (Independence) 对立的概念. 泛指两随机变量之间存在的一切关系.研报分析结果下图是某大类因子下的一些因子 IC 值变化图. 我们能从中看出大概相关性.比如说 OPM 和 OPM_TTM 相关性较强, 变化趋势类似.某研报最终相关性最终结果:代码实现导包# 使用alphalens计算因子的IC分析# 分析的区间2020-
原创
1488阅读
35评论
25点赞
发布博客于 28 天前

量化交易 实战之单因子回测框架

实战之单因子回测框架概述因子排名单因子回测框架代码实现代码quantile = 1quantile = 2quantile = 3quantile = 4quantile = 5概述之前我们在研究平台上所做的因子 IC 分析和因子收益率分析都属于因子的测试框架. 因为我们使用的第三方平台, 所以没有办法做一个比较完整的通用的测试系统. 但是目的是为了测试表现较好的, 所以本节我们来建立一个测试系统.因子排名统计完结果之后我们需要对上百个因子进行一次筛选.构建打分依据:因子平均收益 > 0
原创
2222阅读
40评论
32点赞
发布博客于 29 天前

量化交易 单因子有效性分析之收益率分析

单因子有效性分析之收益率分析概述因子收益率因子收益率计算计算数值结果分为数分组结果因子在周期内的平均收益率概述我们需要通过分析因子的收益率来确定因子在不同股票位置上的表现. 比如我们知道市值因子是越小越好. 那么这个结果怎么来的吖?因子收益率因子收益率是在固定周期内对因子爆露值和下期收益率之间建立横截面回归方程. 得到的权重系数即为因子收益率.股票的收益率:收盘之间计算因子的收益率: 哼截面数据回归方程得来特征值: 因子暴露度, 目标值: 股票收益率注: 默认每天进行横截面回归得到的权重
原创
2167阅读
19评论
18点赞
发布博客于 29 天前

量化交易 实战之单因子 IC 分析

实战之单因子 IC 分析概述导包1. 准备因子数据2. 准备价格数据3. 生成通用 Alphalens 结构4. 计算因子因子 IC 结果分析时间序列图和移动平均线图总结概述在此案例中, 我们将结合之间学到的知识, 使用 alphalens 进行单个因子的 IC 分析. 首先, 我们在投资研究中新建一个云端 notebook.导包# 使用alphalens计算因子的IC分析# 分析的区间2020-01-01到2021-01-01import numpy as npimport pandas
原创
1344阅读
24评论
19点赞
发布博客于 1 月前

量化交易 单因子有效性分析之 Alphalens

单因子有效性分析之 Alphalens概述Alphalens 的数据结构参数factor 格式price 格式API获取综合信息因子 IC 分析因子收益率系数分析概述Alphalens 是一个 Python 的第三方库, 专门用于选股因子的绩效分析.安装 (稳定版):pip install alphalens安装 (开发版):pip install git+https://github.com/quantopian/alphalensAlphalens 的数据结构在做吻戏之前, 需要
原创
2243阅读
18评论
18点赞
发布博客于 1 月前

量化交易 单因子有效性分析之 IC 分析

因子 IC 分析概述信息系数的定义皮尔逊积矩相关系数斯皮尔曼等级相关系数如何求收益率收益率区间计算公式单因子单天 IC 分析分析第一部分代码输出结果第二部分代码输出结果第三部分代码输出结果概述因子的 IC 分析需要确定的是因子与收益率之间的相关性, 提供给删选的数据, 也就是这张表格中的 IC 相关值.IC (Information Coefficient) 信息系数:IC mean: 因子 IC 的平均值IC std: 因子 IC 的标准差IC > 0.02: 因子 IC 大于 0.
原创
1681阅读
3评论
3点赞
发布博客于 1 月前

量化交易 多因子筛选分析简介

多因子筛选分析简介概述流程挖掘因子的过程有效性分析因子方向概述多因子选股模型在模型搭建中, 往往会涉及到非常多的股价影响因子, 并可能导出数量极多的备选模型. 因此, 对于多因子选股模型的评价和筛选, 就显得尤为关键.流程基本面数据因子 (特征) 有很多, 所有找到对应股票收益率高的因子就尤为重要.挖掘因子的过程先从上百个因子当中分析出对股票收益率有效的部分因子:在每个大类因子中去做筛选, 每个大类因子中筛选出有效的 N 个因子, 包括 质量, 估值, 成长等因子严格: 例如 20 个有
原创
2417阅读
24评论
18点赞
发布博客于 1 月前

量化交易 实战之市值中性化选股

实战之市值中性化选股概述代码实现概述本篇我们会利用我们之学到的因子数据处理的技术来实现一个市值中性化选股的策略.代码实现# 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。# 1. 获取市值和市净率因子数据# 因子: 极值, 标准化, 中性化处理# 2. 选定股票池 (根据方向权重)# 市净率小的某些股票from sklearn.linear_model import LinearRegression# 在这个方法中编写任何的初始化逻辑。con
原创
663阅读
10评论
11点赞
发布博客于 1 月前

量化交易 因子数据处理之市值中性化

因子数据处理之市值中性化概述市值影响怎么去除市值影响回归法简介流程分析代码实现概述众所周知, 行业和市值是两个十分显著对因子有影响力的因素. 在进行截面回归判断每个单因子的收益情况和显著性时,需要特别关注这两个十分显著的因素. 市值中性化是为了在因子选股回测的时候, 防止选到的股票集中在固定的某些股票当中.市值影响大部分因子当中都包含了市值的影响. 所以当我们通过一些指标选择股票的时候, 每个因子都会提供市值的因素. 选择的股票就会比较集中, 及选股的标准不太好.举个栗子, 市净率与市值有很高的
原创
524阅读
5评论
7点赞
发布博客于 1 月前

量化交易 因子数据处理之标准化

因子数据处理之标准化概述标准化方法一方法二概述数据标准化主要是应对特征向量中数据很分散的情况, 防止小数据被大数据 (绝对值) 吞并的情况. 另外, 数据标准化也有加速训练, 防止梯度爆炸的作用.标准化标准化常用的方法是 z-score 标准化. 经过处理后的数据均值为 0, 标准差为 1. 处理方法是:μ: 样本的均值σ: 样本的标准差简单说一下 sklearn 的标准化. 没有接触过 机器学习的同志们我建议你们先去看机器学习的内容, 专栏链接:https://blog.csdn.
原创
1274阅读
27评论
22点赞
发布博客于 1 月前

量化交易 因子数据处理之去极值

因子数据处理之去极值概述因子 Panel 结构分析截面数据序列数据因子去极值分位数去极值中位数四分位数百分位数概述在我们构建策略之前首先要对得到的数据进行预处理. 去极值就是排除一些极端值的干扰. 如图:因子 Panel 结构分析Pandas 当中面板数据结构是三维的结构. 由截面数据和序列数据组成.代码:get_price("000001.XSHE", start_date="2020-01-01", end_date="2020-01-06")输出结果:price = get_p
原创
1468阅读
12评论
12点赞
发布博客于 1 月前

量化交易 实战之市值因子策略

实战之市值因子策略概述要求代码实现总结概述市值因子是长期有效的, 这是经过 A 股, 百年美股的大量历史数据验证过的.我们将用之前学到的知识, 拿市值因子 (Alpha 因子) 来实现一个最基本市值因子策略.要求选股: 获得市值最小的前 10 支股票调仓: 每周调仓,将所有资金平摊到这 10 个股票的购买策略. 一次性卖出所有不符合条件的代码实现# 在这个方法中编写任何的初始化逻辑。context对象将会在你的算法策略的任何方法之间做传递。def init(context):
原创
2337阅读
24评论
16点赞
发布博客于 1 月前

量化交易 因子数据获取

多因子策略流程策略流程多因子策略流程因子挖掘回测平台介绍获取函数获取合约历史数据获取交易日列表查询财务数据策略流程如果我们想要构建一个多因子策略, 那么因子的挖掘与选择就至关重要. 让我们再来看一下策略的流程图:多因子策略流程因子挖掘因子数据的处理:去极值标准化中性化单因子的有效性检测:因子 IC 分析因子收益率分析因子的方向多因子相关性和组合分析:因子相关性因子合成回测多因子选股的权重调仓周期平台介绍我们将使用 RiceQuant 提供的投资研
原创
1500阅读
14评论
15点赞
发布博客于 1 月前

量化交易 多因子策略理论

多因子策略理论股票量化策略Alpha & BetaBetaAlpha多因子的种类因子分析的角度因子来源的角度多因子策略的优势资产定价模型 (CAPM)股票量化策略股票量化交易策略最基本有两种形式, 趋势交易 (技术分析) 和市场中性 (基本面分析). 经常使用的方法为多因子选股和趋势追踪.不管是多因子选股策略还在趋势追踪策略, 都是为了获取一定的超额收益. 趋势追踪策略通过各种交易时机手段获取, 而股票的多因子选股策略则是通过选股获得.Alpha & Beta每个投资策略的收益率可
原创
395阅读
7评论
7点赞
发布博客于 1 月前

量化交易 实战之策略入门

实战之策略入门概述要求指标市净率股票市值代码实现概述不管是技术分析还是基本面分析, 我们在进行投资的时候会选择某些表现好的股票来作为一个股票池. 从中进行交易的判断 (技术分析) 或者直接购买.要求选股: 获得市净率小于 20, 且股票市值最高的 10 支股票调仓: 每日调仓, 将所有资金平摊到这 10 个股票的购买策略. 一次性卖出所有不符合条件的指标市净率市净率 (Price-to-Book Ratio,简称P/B PBR) 指的是每股股价与每股净资产的比率. 市净率可用于股票投资
原创
1742阅读
23评论
20点赞
发布博客于 1 月前

量化交易 策略评价指标

策略评价指标概述收益指标回测收益率年化收益率基准收益率风险指标最大回撤单位风险收益指标夏普比率概述在量化策略回测研究中, 往往需要通过风险评价指标从各个角度客观, 全面地分析策略的可行性. 因此需要对常见的指标有一定的了解.收益指标回测收益率(最终价值 - 初始价值) / 初始价值年化收益率我们更加注重年化收益率. 对股票来讲, 年化达到 15~30% 已经算是比较好的策略. 当然, 年化收益率越高越好.基准收益率相同条件下, 一个简单的买入并持有合约策略的收益率 ( 默认基准合约
原创
2128阅读
8评论
6点赞
发布博客于 1 月前

量化交易 回测交易接口

回测交易接口概述交易函数指定股票交易目标价值下单交易注意事项拒单市价 vs 限价交易的费用投资组合查看投资组合信息context 属性portfolio 对象代码实现概述在建立自己的量化策略回测系统之前, 我们必须对策略回测中的一些接口有一定的了解.API 文档:https://www.ricequant.com/doc/quant/strategy-api.html#交易相关函数交易函数指定股票交易order_shares - 指定股票交易 (股票专用)order_shares(id_or
原创
2093阅读
27评论
27点赞
发布博客于 1 月前

量化交易 数据获取接口

获取数据概述数据接口种类行业 & 板块 股票类表股票代码 & 代码补齐RiceQuant 上的股票股票自动搜索及补全获取行业获取板块代码展示获取股票合约数据某一合约历史数据通过 bar_dict 获取代码展示获取财务数据查询财务数据过滤指标条件代码展示定时获取数据每天运行每周运行每月运行运行顺序概述工欲善其事, 必先利其器. 想做量化, 数据是基本! 本篇我们会介绍如何获取数据.数据接口种类获取指定行业, 板块股票列表history_bars: 指定股票合约历史数据get_fu
原创
2551阅读
16评论
11点赞
发布博客于 1 月前

量化交易 平台介绍

平台介绍概述回测框架RiceQuant 平台介绍注册创建策略策略页面功能介绍如何完成一个策略策略初始设置策略主体运行流程分析概述RiceQuant 是一个云端的框架, 可以帮助我们随时, 随地的开发袭击的交易策略, 验证资金的投资思路. RiceQuant 的回测系统简单好用, 所以在接下来的学习当中, 我们会使用这个平台来讲解.回测框架肯定有很多朋友好奇为什么我们不自己实现一个回测框架.原因有三:没有完整的股票行情和基本面数据回测平台是载体, 重点在于快速验证策略证券投资机构各自使用的回
原创
1482阅读
25评论
21点赞
发布博客于 1 月前

量化交易 简介

简介概述量化交易的历史量化交易的产生量化交易的兴起量化交易的繁荣国内量化交易的发展史量化交易分类趋势性交易市场中性策略高频交易不同金融产品的投资技术股票期货量化交易的优势严格的纪律性完备的系统靠数据模型取胜量化交易研究流程流程内容分析结果总结概述量化交易 (Quantitative Trading) 是借助现代统计学和数学 (机器学习) 的方法, 利用计算机技术来进行交易的证券投资方式.量化交易从庞大的历史数据中海选能带来超额收益的多种 “大概率” 事件以定制策略. 用数量模型验证及固化这些规律和策
原创
2160阅读
20评论
16点赞
发布博客于 1 月前

PyTorch 词向量模型简介

词向量模型简介概述词向量维度Word2VecCBOW 模型Skip-Gram 模型负采样模型词向量的训练过程1. 初始化词向量矩阵2. 神经网络反向传播概述我们先来说说词向量究竟是什么. 当我们把文本交给算法来处理的时候, 计算机并不能理解我们输入的文本, 词向量就由此而生了. 简单的来说, 词向量就是将词语转换成数字组成的向量.当我们描述一个人的时候, 我们会使用身高体重等种种指标, 这些指标就可以当做向量. 有了向量我们就可以使用不同方法来计算相似度.那我们如何来描述语言的特征呢? 我们把语
原创
3885阅读
94评论
68点赞
发布博客于 1 月前

PyTorch 图像识别实战

图像识别实战概述预处理导包数据读取与预处理数据可视化主体加载参数建立模型设置哪些层需要训练优化器设置训练模块开始训练测试测试网络效果测试训练好的模型测试数据预处理展示预测结果概述今天我们要来做一个进阶的花分类问题. 不同于之前做过的鸢尾花, 这次我们会分析 102 中不同的花. 是不是很上头呀.预处理导包常规操作, 没什么好解释的. 缺模块的同学自行pip -install.import numpy as npimport timefrom matplotlib import pyplot
原创
5359阅读
66评论
65点赞
发布博客于 1 月前

PyTorch 卷积神经网络简介

卷积神经网络简介概述架构卷积是什么图像颜色通道特征图个数堆叠的卷积层概述卷积神经网络在 CV 领域, 检测任务领域, 分类与检索领域, 图片重构领域, 医学任务领域, 无人驾驶领域, 人脸识别领域等等都有广泛的应用.卷积神经网络与传统网络的区别:架构整体架构:输入层卷积层池化层全连接层卷积是什么卷积就是一种特殊的加权求和. 卷积是一种混合信息的手段, 通过对输入图片大小相同区块和卷积核进行点乘然对不同通道后求和.图像颜色通道当我们在图像上应用卷积时, 我们分别在 W,
原创
3287阅读
50评论
38点赞
发布博客于 1 月前

逻辑回归 总结

逻辑回归 总结概述Sigmoid 函数逻辑回归实现案例一概述逻辑回归 (Logic Regression) 本质上就是线性回归. 虽然逻辑回归被称为回归, 但实际上是一个分类模型, 用作二分类问题. 逻辑回归的决策边界可以是非线性的.Sigmoid 函数Sigmoid 函数将任意的输入映射到了 [0, 1] 区间. 我们在线性回归中可以得到一个预测值, 再将该值映射到 Sigmoid 函数中. 这样我们就完成了由值到概率的转换, 即分类任务.预测函数:分类任务:逻辑回归实现impor
原创
913阅读
10评论
17点赞
发布博客于 1 月前

PyTorch 神经网络分类问题

神经网络分类问题概述导包设置超参数读取数据可视化展示建立模型训练模型完整代码概述对于 MNIST 手写数据集的具体介绍, 我们在 TensorFlow 中已经详细描述过, 在这里就不多赘述. 有兴趣的同学可以去看看之前的文章: https://blog.csdn.net/weixin_46274168/article/details/114109017在上一节的内容里, 我们用 PyTorch 实现了回归任务, 在这一节里, 我们将使用 PyTorch 来解决分类任务.导包import torch
原创
822阅读
4评论
21点赞
发布博客于 1 月前

PyTorch 神经网络气温预测

神经网络气温预测概述导包数据读取数据预处理构建网络模型数据可视化完整代码概述具体的案例描述在此就不多赘述. 同一数据集我们在机器学习里的随机森林模型中已经讨论过.导包import numpy as npimport pandas as pdimport datetimeimport matplotlib.pyplot as pltfrom pandas.plotting import register_matplotlib_convertersfrom sklearn.preprocess
原创
5708阅读
29评论
28点赞
发布博客于 2 月前

PyTorch hub 模块

hub 模块概述代码实现概述PyTorch Hub 是一个简易 API 和工作流程. 为复现研究提供了基本构建模块, 包含预训练模型库.PyTorch Hub 还支持 Colab, 能与论文代码结合网站 Paper With Code 集成, 用于更广泛的研究.PyTorch Hub 的使用非常简单, 无需下载模型, 只需要敲torch.hun.load()就完成了代码实现import torchmodel = torch.hub.load('pytorch/vision:v0.4.2',
原创
852阅读
3评论
14点赞
发布博客于 2 月前

PyTorch Tensor 的形状

Tensor 的形状ScalarVectorMatrix图片展示Scalar# Scalarx = tensor(42,)print(x)print(x.dim())print(x * 2)print(x.item())输出结果:tensor(42)0tensor(84)Vector# Vectorv = tensor([1.5, -0.5, 3.0])print(v)print(v.dim())print(v.size())输出结果:42tensor([ 1.
原创
479阅读
2评论
14点赞
发布博客于 2 月前

PyTorch autograd 机制

autograd 机制概述代码实现手动定义求导计算流量反向传播计算线性回归导包构造 x, y构造模型参数 & 损失函数训练模型完整代码概述PyTorch 干的最厉害的一件事情就是帮我们把反向传播全部计算好了.代码实现手动定义求导import torch# 方法一x = torch.randn(3, 4, requires_grad=True)# 方法二x = torch.randn(3,4)x.requires_grad = Trueb = torch.randn(3,
原创
439阅读
2评论
12点赞
发布博客于 2 月前

PyTorch 简介

简介概述PyTorch 是什么为什么要学 PyTorch基本用法基本计算方法概述PyTorch 是什么PyTorch 是一个提供两个高级功能的 python 包:具有强 GPU 加速度的张量计算 (如 numpy)深层神经网络建立在基于磁带的自动调整系统上注: PyTorch 中的 Torch 和 TensorFlow 中的 Tensor 是一个意思.为什么要学 PyTorch因为 Pytorch 发展迅速. 框架好不好用, 咱们来看图说话:PyTorch 可以说是现阶段主流的深度学
原创
522阅读
0评论
10点赞
发布博客于 2 月前

TensorFlow MNIST 数据集

MNIST 数据集MNIST 数据集介绍LeNet 模型介绍卷积池化 (下采样)激活函数 (ReLU)LeNet 逐层分析1. 第一个卷积层2. 第一个池化层3. 第二个卷积层4. 第二个池化层5. 全连接卷积层6. 全连接层7. 全连接层 (输出层)代码实现导包读取 & 查看数据数据预处理模型建立训练模型保存模型流程总结完整代码MNIST 数据集介绍MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.LeNe
原创
1356阅读
6评论
14点赞
发布博客于 2 月前

TensorFlow 线性回归

线性回归线性回归概述代码实现导包获取训练数据构造预测函数构造损失函数调整预测函数开始训练线性回归概述关于线性回归的具体介绍, 可以参考我的机器学习专栏, 在这里我们就不再赘述.线性回归公式:代码实现导包首先我们需要导入 tensorflow 包和 matplotlib 包.import tensorflow as tffrom matplotlib import pyplot as plt获取训练数据# ------------------1. 获取训练数据------------
原创
1114阅读
2评论
11点赞
发布博客于 2 月前

TensorFlow 简介

简介概述TensorFlow三级目录概述深度学习是目前机器学习学科发展最蓬勃的分支, 在整个 AI 有广阔的应用. 人工智能是计算机科学的一个分支, 著名的 “图灵测试” 是 AI 的终极目标.深度学习是在人工神经网络基础上发展而来的一种表示学科.深度学习的优势:海量的训练数据非常灵活的模型足够的运算能力足够的对抗维度灾难的先验模型TensorFlow随着各种图像识别, 语音识别的记录被不断刷新, 深度学习被证明是一个极具潜力的技术方向. 构建高效, 可靠, 可扩展的基础工具, 能
原创
1237阅读
1评论
16点赞
发布博客于 2 月前

SEO优化 关键词部署策略

关键词部署策略概述关键词的类型导航查询信息查询交易查询长尾理论关键词挖掘关键词挖掘工具关键词规划师百度指数百度搜索下拉框批量对关键词进行筛选搭建网站的关键词库关键词部署策略金字塔形关键词分布关键词策略定制总结概述关键词就是用户输入搜索框中的文字, 也就是用户命令搜索引擎寻找的东西.关键词的类型导航查询导航查询是指为了直接访问某个特点的网站而进行的搜索. 在某些情况下, 用户可能不知道具体的网址, 这时搜索引擎就成为了白皮书.信息查询信息查询, 顾名思义就是为了寻找特定信息而进行的搜索. 例如
原创
176阅读
1评论
5点赞
发布博客于 2 月前

SEO优化 SEO基础

SEO 基础概述SEMSEO站内 SEO 优化内部链接优化网站结构优化内容优化URL 规则优化关键词部署TDK 优化站外 SEO 优化分类目录社会媒体购买高价值链接链接交换论坛链接高质量内容搜索引擎是什么搜索引擎的重要性基于地理位置的重新优化搜索引擎算法机制抓取站内入口站外链接网站权重URL页面内容收录原创性网站权重URL 规则相关性跟新频率过度优化网站页面数量排名 (流量)内部链接相关性外部链接原创性概述SEO (Search Engine Optimization): 通过了解各类搜索引擎如何抓取互
原创
251阅读
3评论
5点赞
发布博客于 2 月前

SEO优化 网站结构优化

网站结构优化网站的结构物理结构扁平物理结构树形物理结构逻辑结构扁平逻辑结构树形逻辑结构网站结构对 SEO 的影响网站结构优化网站的结构网站结构是指在网站中页面与页面之间的层次关系, 按性质分为逻辑结构和物理结构.合理的网站结构能正确表达网站的基本内容及内容之间的层次关系. 使得用户, 搜索引擎在浏览器网站时可以方便的获取信息, 不至于迷失.物理结构网站的物理结构指的是网站目录及所包含文件所存储的真实位置所表现出来的结构. 物理结构由页面的物理存放位置决定.物理结构的两种表现形式:扁平物理结
原创
331阅读
1评论
3点赞
发布博客于 2 月前

线性回归 总结

线性回归 总结概述例子通俗解释数学推导误差评估方法梯度下降下降方法概述线性回归的定义是: 目标值预期是输入变量的线性组合. 线性模型形式简单, 易于建模, 但却蕴含着机器学习中一些重要的基本思想. 线性回归, 是利用数理统计中回归分析, 来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法, 运用十分广泛.优点: 结果易于理解, 计算不复杂缺点: 对非线性的数据拟合不好例子数据: 工资和年龄 (2 个特征)目标: 预测银行会贷款给我多少钱 (标签)工资年龄额度
原创
211阅读
4评论
11点赞
发布博客于 1 月前

K 近邻 总结

K 近邻 总结概述案例 (电影题材定义)简介距离度量欧式距离K 值的选择分类决策规则交叉验证案例一案例二概述k 近邻 (k-neareast neighbor, kNN) 是解决分类与回归问题最基本的算法之一. 该算法没有显式的训练过程k 近邻算法的核心思想用一一句话就可以概括: "给定测试样本, 基于某种距离度量找出训练集中与其最近的 k 个训练样本, 然后基于这 k 个邻近 的信息进行预测.k 近邻算法的三个要素:距离度量k 值的选择分类决策规则案例 (电影题材定义)简介动作片和
原创
151阅读
0评论
3点赞
发布博客于 3 月前

Java数据库 1.7 多表操作

多表操作概述表与表之间的关系一对多关系多对多的关系一对一关系外键约束外键特点声明外键约束一对多操作分析实现: 分类和商品操作概述实际开发中, 一个项目通常需要很多张表才能完成. 例如: 一个商场项目就需要分类表 (category), 商品表 (products), 订单表(orders) 等多张表. 且这些表的数据之间存在一定的关系. 接下来我们将在单表的基础上, 一起学习多表方面的知识.表与表之间的关系一对多关系常见实例: 客户和订单, 分类和商品, 部门和员工.一对多键表原则: 在从表
原创
191阅读
2评论
2点赞
发布博客于 3 月前

Java数据库 1.6 SQL 备份与恢复

SQL 备份与恢复SQL 备份MySQL 命令备份可视化工具备份SQL 恢复MySQL 命令恢复可视化工具恢复SQL 备份数据库的备份是指将数据库转换成对应的 sql 文件.MySQL 命令备份数据库导出 sql 脚本的格式:mysqldump -u用户名 -p密码 数据库名>生成的脚本文件路径列如:mysqldump -uroot -proot day04>d:\day03.sql以上备份数据库的命令中需要用户和密码. 即表明该命令要在用户没有登录的情况下使用.可视化工具
原创
197阅读
6评论
6点赞
发布博客于 3 月前

Java数据库 1.5 SQLyog 图形化开发工具

SQLyog 图形化开发工具安装使用二级目录三级目录安装自行从网上下载.使用输入用户名, 密码, 点击链接按钮, 进行访问 MySQL 数据库进行操作.二级目录三级目录
原创
159阅读
6评论
3点赞
发布博客于 3 月前

Java数据库 1.4 SQL 语句 DQL

SQL 语句 DQL准备工作语法简单查询条件查询练习排序查询练习聚合查询准备工作#创建商品表:pid intpname varchar(20)price doublecategory_id varchar(32)插入一条数据:pid=1,pname='联想',price=5000,category_id='c001'create table product( pid int primary key, pname varchar(20), price double, category
原创
175阅读
7评论
3点赞
发布博客于 3 月前

Java数据库 1.3 SQL 语句

SQL 语句概述SQL 语句分类SQL 通用语法DDL 之数据库操作: database查看数据库删除数据库使用数据库DDL 之表操作: table创建表查看表删除表修改表结构格式DML 数据操作语言插入表记录: insert更新表记录: update删除记录: deleteDOS 操作数据乱码解决概述数据库是不认识 Java 语言的, 但是我们同样要与数据库交互. 这时需要使用到数据库认识的语言 SQL 语句, 它是数据库的代码.结构化查询语言 (Structured Query Language)
原创
174阅读
2评论
1点赞
发布博客于 3 月前

Java数据库 1.2 MySQL 数据库

MySQL 数据库MySQL 安装登陆 MySQL 数据库MySQL 安装安装可以自行百度或者某宝花 10 元.安装后, MySql 会以 windows 服务的方式为我们提供数据存储的功能. 开启和关闭服务的操作: 右键点击我的电脑 -> 管理 -> 服务 -> 可以找到 MySQL 服务开启或停止.也可以在 DOS 窗口, 通过命令完成 MySQL 服务的启动和停止. (必须以管理员身份运行 cmd 命令窗口)登陆 MySQL 数据库MySQL 是一个需要账户密码登录的数据
原创
159阅读
1评论
1点赞
发布博客于 3 月前

Java数据库 1.1 数据库介绍

数据库介绍概述数据库表表数据常见数据库概述数据库就是存储的仓库, 其本质是一个文件系统, 将数据按照特定的格式将数据存储起来. 用户可以对数据库中的数据进行增加, 修改, 删除及查询操作.数据库管理系统 (DataBase Management System, DBMS): 指一个操作和管理数据库的大型软件, 用于建立, 使用和维护数据库. 对数据库进行统一管理和控制, 以保证数据库的安全性和完整性. 用户通过数据库管理系统访问数据库中表内的数据.数据库表数据库中以表为组织单位存储数据. 表类似我
原创
131阅读
1评论
1点赞
发布博客于 3 月前

Java网络 2.5 浮动

浮动概念浮动的元素脱标浮动的元素互相贴靠浮动的元素有 "字围" 效果概念浮动是 css 里面布局的最多的属性..box1 { float: left; width: 300px; height: 400px; background-color: yellowgreen;}.box2 { float: left; width: 400px; height: 400px;
原创
230阅读
3评论
2点赞
发布博客于 3 月前

Java网络 2.4 标准文档流

标准文档流概述块级元素和行内元素块级元素和行内元素的相互转换概述宏观的讲, 我们的 web 页面和 photoshop 等设计软件有本质的区别. web 页面的制作, 是个 “流”, 必须从上而下, 像 “织毛衣”. 而设计软件, 想往哪里画个东西, 都能画.我们要看看标准流有哪些微观现象:空白折叠现象: 如果我们想让 img 标签之间没有空隙, 必须紧密连接高矮不齐, 底边对其自动换行, 一行写不满, 换行写块级元素和行内元素学习的初期, 你就要知道, 标准文档流等级森严. 标签分为两
原创
230阅读
0评论
5点赞
发布博客于 3 月前

Java网络 2.3 边框 border

边框 border概述边框显示综合属性: border三要素按方向练习概述边框有三个要素: 粗细, 线型, 颜色.border: 1px dashed red;所有的线型:边框显示不同浏览器边框显示可能有差异. 比如, “border: 10px ridge red;” 在 chrome 和 firefox, IE 中有细微差别:如果公司里面的设计师, 追求极高的页面还原度, 那么不能使用 css 来制作边框, 而要用到图片来显示边框. 比较稳定的就几个: solid, dashed,
原创
306阅读
1评论
2点赞
发布博客于 3 月前

Java网络 2.2 盒模型

盒模型盒子中的区域认识 width 和 height三级目录盒子中的区域一个盒子中主要的属性 5 个: width, height, padding, border, margin.width (宽度): CSS 中 width 指的是内容的宽度, 而不是盒子的宽度height (高度): CSS 中 height 指的是内容的高度, 而不是盒子的高度padding (内边距)broder (边框)margin (外边距)盒模型的示意图:代码演示:认识 width 和 height
原创
282阅读
0评论
0点赞
发布博客于 3 月前

Java网络 2.1 权重问题深入

权重问题深入同标签多类名冲突!important 标记正确写法注意事项第一点第二点第三点权重计算的总结同标签多类名冲突<p class="spec1 spec2">我是什么颜色?</p><p class="spec2 spec1">我是什么颜色?</p>样式和在标签中该类名的顺序无关, 只和 css 的顺序有关:<style type="text/css"> .spec1 { color: blu
原创
257阅读
0评论
0点赞
发布博客于 3 月前

Java网络 1.20 题目练习

题目练习第一题第二题第三题第一题第二题第三题
原创
310阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.19 层叠性

层叠性概述层叠性计算规则权重相同如何处理?权重均为 0, 如何处理?权重规则总结概述层叠性: 就是 CSS 处理冲突的能力. 所有的权重计算, 没有任何兼容问题! CSS 像艺术家一样优雅, 像工程师一样严谨. (很多公司如果要笔试, 那么一定会考层叠性)层叠性计算规则当选择器, 选择上了某个元素的时候, 会计算权重: id 的数量, 类的属性, 标签的数量.不进位, 实际上能进位 (255 个标签, 等于 1 个类名). 但是没有实战意义.权重相同如何处理?如果权重一样, 那么以后出现的
原创
441阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.18 继承性

继承性概述能继承的属性概述有一些属性, 当给自己设置的时候, 自己的后代都继承上了, 这个就是继承性.能继承的属性color, text 开头的, line 开头的, font 开头的.这些关于文字样式的, 都能够继承. 所有关于盒子的, 定位的, 布局的属性都不能继承.所以, 如果我们的页面的文字, 都是灰色, 都是 14px. 那么就可以利用继承性:body { color: gray; font-size: 14px;}继承性是从自己开始, 直到最小的元素..
原创
396阅读
0评论
2点赞
发布博客于 3 月前

Java网络 1.17 CSS3 选择器

CSS3 选择器兼容性问题儿子选择器序选择器下一个兄弟选择器兼容性问题我们现在给大家介绍一下浏览器:windows xp 操作系统安装的 IE6windows vista 操作系统安装的 IE7windows 7 操作系统安装的 IE8windows 8 操作系统安装的 IE9windows10 操作系统安装的 edge浏览器兼容问题, 要出, 就基本上就是出在 IE6, 7 身上. 这两个浏览器是非常低级的浏览器.浏览器市场占有率:对于低级浏览器的要求:大家知道 IE6 存在兼
原创
416阅读
0评论
0点赞
发布博客于 3 月前

Java网络 1.16 CSS 高级选择器

css 高级选择器后代选择器交集选择器并集选择器 (分组选择器)通配符后代选择器<style type="text/css">.div1 p { color: red;}</style>空格就表示后代, .div1 p 就是 .div1 的后代所有的 p.强调一下, 选择的是后代, 不一定是儿子. 比如:<div class="div1"> <ul> <li> <p&g
原创
514阅读
0评论
0点赞
发布博客于 3 月前

Java网络 1.15 基础选择器

基础选择器概述标签选择器id 选择器类选择器概述css 怎么学? 其实很简单, 分为两个部分:选择器, 怎么选属性, 样式是什么标签选择器就是标签的名字.<h1>跟着小白学编程<span>前端基础班</span>CSS 课程!</h1>css:<style type="text/css"> span{ color: red; } </style>
原创
473阅读
0评论
0点赞
发布博客于 3 月前

Java网络 1.14 CSS

CSS概述CSS 整体感知一些常见的属性字体颜色字体大小背景颜色加粗概述现在互联网前端三层:HTML (超文本标记语言): 从语义的角度描述页面结构CSS (层叠式样式表): 从审美的角度负责页面样式JS (JavaScript): 从交互的角度描述页面行为我们现在要开始学习 CSS 了, 就是样式.CSS 整体感知css 是 cascading style sheet 层叠式样式表的简写. “层叠式” 的意思我们会慢慢的去讲解.css 的最新版本是 css4, 我们先从 css2.1
原创
424阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.13 HTML杂项

HTML 杂项HTML 注释字符实体HTML 废弃标签介绍HTML 注释任何的程序, 代码都有注释. 注释就是给程序员看的, 不影响程序的.适当的注释, 能够让我们的程序更加可读. 用中文提示自己, 这里的程序是什么的.<!--这里是头部, 还没有做完, 准备加两天班弄完--><div>头部</div><!--这里是张三负责的, 跟我没关系--><div>主要内容</div><!--这里是李四负责的-->&
原创
431阅读
1评论
0点赞
发布博客于 3 月前

Java网络 1.12 表单

表单概述文本框密码框单选按钮复选框下拉列表多行文本框 (文本域)三种按钮普通按钮提交按钮重置按钮label 标签概述表单就是收集用户信息的, 就是让用户填写的, 选择的.<div> <h1>欢迎注册本网站</h1> <form> 所有的表单内容, 都要写在 form 标签里面 </form></div>form 是英语表单的意思, form 标签里面有 action 属性和 metho
原创
469阅读
1评论
1点赞
发布博客于 3 月前

Java网络 1.11 div 和 span

div 和 span概述div 标签代码实现span 标签代码实现概述div 和 span 是非常重要的标签. div 的语义是 division “分割”, span 的语义就是 span “范围, 跨度”. 在 CSS 课程中你将知道, 这两个东西, 都是最重要的 “盒子”.div 标签div 在浏览器中, 默认是不会增加任何的效果改变的. 但是语义便利, div 中的所有元素是一个小区域.div 标签是一个容器级标签, 里面什么都能放, 甚至可以放 div 自己.代码实现<div&
原创
533阅读
2评论
0点赞
发布博客于 3 月前

Java网络 1.9 超级链接

超级链接基本写法a 标签的另外两个属性页面内的锚点a 是一个本文级的标签基本写法一个网站, 是由很多 html 网页组成的. html 网页之间能够通过超级链接互相跳转, 从而形成了 “网”.语法:<a href="1.html">结婚照</a>a 是英语 anchor “锚” 的意思, 就好像这个页面往另一个页面扔出一个锚. 是一个文本级的标签.href 是英语 hypertext reference 超文本地址的缩写.a 标签的另外两个属性title: 悬停文
原创
460阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.8 图片

图片能使用的图片类型语法alt 属性相对路径图片在文件夹里图片在浅一层文件夹里练习能使用的图片类型页面上可以插入的图片类型是: jpg (jpeg), gif, png, bmp.不能再网页中插入的图片格式是: psd, ai.语法HTML 页面不是直接插入图片, 而是插入图片的引用地址, 所以也要把图片上传到服务器上.插入方法:<img src="iamlittlewhite.jpg" />img 是英语 image “图片” 的简写. src 是英语 source “资源”
原创
439阅读
0评论
0点赞
发布博客于 3 月前

Java网络 1.7 h 和 p 标签

h 和 p 标签h 标签p 标签审查元素功能h 标签h 是英文标题 Heading 的缩写.<h1>到 <h6>都是标签:-<h1></h1>: 一级标题-<h2></h2>: 二级标题-…-<h6></h6>: 六级标题h 标签没有嵌套关系的. 由于 h3 跟着一个 h2. 所以, 我们自己就知道了这个 h3 是 h2 子标题.h 是容器级的标签. 理论上里面可以放置 p 等其他标签. 在语义
原创
490阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.6 HTML 的基本语法特性

HTML 的基本语法特性概述空白折叠现象标签要严格封闭概述HTML 对换行不敏感, 对 tab 不敏感. HTML 只在乎标签的嵌套结构, 嵌套的关系. 所以:1 <div>2 <h3></h3>3 <p></p>4 </div>完全等价于:1 <div>2 <h3></h3>3 <p></p>4 </div
原创
464阅读
1评论
2点赞
发布博客于 3 月前

Java网络 1.5 HTML 骨架

这里写目录标题概述文档声明头HTML 规范概述标准的骨架:我们来一部分一部分的学习文档声明头任何一个标准的 HTML 页面, 第一行的开头一定是这样:1 <!DOCTYPE ……这一行, 就是文档声明头, DocType Declaration. 此标签可告知浏览器文档使用哪种 HTML 或 XHTML 规范. 到底有哪些规范呢?首先我们先确定一件事情, 我们现在学习的是 HTML4.0.1 这个版本, 这个版本是 IE6 开始兼容的. HTML5 是 IE9 开始兼容的. 但是
原创
480阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.4 HTML 骨架和基本语法简介

HTML骨架和基本语法概述完整骨架概述html 有基本骨架, 骨架抽象出来:<html> <head> </head> <body> </body></html>网页的最外层的标签对是 标签对, 里面有两部分, 分别是 head 和 body.head 标签中, 描述网页的配置: body 中的内容, 才是用户可以看见的内容.完整骨架1 <!DOCTYPE html PUBL
原创
539阅读
0评论
1点赞
发布博客于 3 月前

Java网络 1.3 开发工具介绍

开发工具介绍概述开发工具总结概述任何纯本文编辑器都能够编辑 html, 比如记事本, editplus, notepad++. 下面我们来看一些比较有名的专门制作网页的工具.开发工具DreamWeaver (Adobe 公司的产品, 这个软件和 Fireworks, Flush 俗称网页三剑客, 目前使用不多了)Sublime (之前比较流行的编辑器, 插件多)WebStorm (更高级的项目级别编程工具)Visual Studio Code(微软开源的 Web 和云应用的跨平台源代码编辑器
原创
456阅读
2评论
0点赞
发布博客于 3 月前

Java网络 1.2 HTML 初步认识

HTML 初步认识概述第一个网页HTML 标签对HTML 只能给文本添加语义图解面试技巧概述HTML (Hyper Text Markup Language, 超文本标记语言) 是负责描述文档语义的语言. .html 就是网页的格式.第一个网页现在, 来制作第一个网页:新建一个 txt 文件: 也就是说, html 本质上和 txt 没有任何区别, 他们都是纯文本文件. 然后我们强行把这个文件的拓展名, 从 txt 更改为 html, 我们会发 icon 就编程浏览器的 icon 了.纯文本
原创
489阅读
0评论
0点赞
发布博客于 3 月前

Java网络 1.1 互联网的原理

互联网的原理上网就是请求数据实验总结服务器硬件软件浏览器HTTP举例总结上网就是请求数据当我们上网时, 网页上的内容是如何被我们看见的呢?我们先不直接解决这个问题, 我们先来做一个小实验:实验我们打开 chrome 浏览器为例, 在 chrome 浏览器地址栏中输入: Chrome://version/从上图我们可以看到 Profile Path (临时文件夹). 这个文件夹是 Chrome 浏览器用来存放上网浏览的页面和资源文件.我们先请客这个文件夹中的全部内容, 然后重新打开 Chrom
原创
470阅读
0评论
1点赞
发布博客于 3 月前

Java基础 第五节 第九课

方法引用概述冗余的 Lambda 场景用方法改进代码问题分析代码展示方法引用符语义分析推导与省略通过对象名成员方法通过类名称引用静态方法通过 super 引用成员方法通过 this 引用成员方法类的构造器引用数组的构造器引用概述在使用 Lambda 表达式的时候, 我们实际上传递进去的代码就是一种解决方案: 拿什么参数. 那么考虑一种情况, 如果我们在 Lambda 中所指定的操作方案, 已经有地方存在相同方案, 那是否还有必要再写重复逻辑?冗余的 Lambda 场景来看一个简单的函数式接口以应用
原创
368阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第八课

集合元素处理传统方式题目解答Stream 方式题目解答传统方式题目现在有两个 ArrayList 集合存储队伍当中的多个成员姓名. 要求使用传统的 for 循环 (或增强 for 循环) 依次进行以下若干操作步骤:第一个队伍只要名字为 3 个字的成员姓名, 存储到一个新集合中第一个队伍筛选之后只要前 3 个人, 存储到一个新集合中第二个队伍只要姓张的成员姓名, 存储到一个新结合中第二个队伍筛选之后不要前 2 个人, 存储到一个新集合中将两个队伍合并为一个队伍, 存储到一个新集合中根据姓名
原创
409阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第七课

Stream 流概述传统集合的多步遍历代码循环遍历的弊端Stream 的更优写法流式思想概述步骤方案元素队列获取流根据 Collection 获取流根据 Map 获取流根据数组获取流常用方法逐一处理: forEach复习 Consumer 接口过滤: filter复习 Predicate 接口映射: map复习 Function 接口统计个数: count取用前几个: limit跳过前几个: skip组合: concat概述说到 Stream 便容易想到 I/O 流, 而实际上, 谁规定 “流” 就一定
原创
394阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第六课

常用函数式接口概述Supplier 接口练习: 求数组元素最大值题目解答Consumer 接口抽象方法: accept默认方法: andThen练习: 格式化打印信息题目解答Predicate 接口抽象方法: test默认方法: and默认方法: or默认方法: negate练习: 集合信息筛选题目解答Function 接口抽象方法: apply默认方法: andThen练习: 自定义函数模型拼接题目解答概述JDK 提供了大量常用的函数式接口以丰富 Lambda 的典型使用场景.它们主要在java.ut
原创
373阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第五课

函数式编程概述Lambda 的延迟执行性能浪费的日志案例体验 Lambda 的更优写法证明 Lambda 的延迟使用 Lambda 作为参数和返回值概述在兼顾面向对象特性的基础上, Java 语言通过 Lambda 表达式与方法引用等, 为开发者打开了函数式编程的大门.Lambda 的延迟执行有些场景的代码执行后, 结果不一定会被使用, 从而造成性能浪费. 而 Lambda 表达式是延时执行的, 这正好可以作为解决方案, 提升性能.性能浪费的日志案例日志可以帮助我们快速的定位问题, 记录程序运行
原创
372阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第四课

函数式接口概念格式@FunctionalInterface 注解自定义函数式接口概念函数式接口在 Java 中是指: 有且仅有一个抽象方法的接口.函数式接口, 即适用于函数式编程场景的接口. 而 Java 中的函数式编程体系就是 Lambda, 所以函数式接口就是可以适用于 Lambda 使用的接口. 只有确保接口中有且仅有一个抽象方法, Java 中的 Lambda 才能顺利进行推导.“语法糖” 是指定使用更加方便, 但是原理不变的代码语法. 例如在遍历集合时使用的 for-each 语法, 其实
原创
391阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第三课

综合案例概述图解基本实现服务端实现客户端实现文件上传优化上传分析文件名写死的问题循环接收的问题效率问题代码展示回写分析代码展示概述文件上传案例:客户端输入流, 从硬盘读取文件数据到程序中客户端输出流, 写出文件数据到服务端服务端输入流, 读取文件数据到服务端程序服务端输出流, 写出文件数据到服务器硬盘中图解基本实现服务端实现import java.io.BufferedInputStream;import java.io.BufferedOutputStream;import
原创
494阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第二课

TCP 通信程序概述Socket 类构造方法成员方法ServerSocket 类构造方法成员方法简单的 TCP 网络程序TCP 通信分析图解客户端向服务器发送数据服务端实现客户端实现服务器向客户端回写数据服务端实现客户端实现概述TCP 通信能实现两台计算机之间的数据交互. 通信的两端, 要严格区分为客户端 (Client) 与服务端 (Server).两端通信时步骤:服务端程序, 需要事先启动, 等待客户端的连接客户端主动连接服务器端, 连接成功才能通信. 服务端不可以住到连接客户端在 Ja
原创
377阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第五节 第一课

网络编程入门软件结构C/S 结构B/S 结构网络通信协议协议的分类TCPUDP网络编程三要素协议IP 地址IP 地址分类常用命令特殊的 IP 地址端口号软件结构C/S 结构C/S 结构: 全称为 Client/Server 结构, 是指客户端和服务器结构. 常见的程序有 QQ, 迅雷等软件.B/S 结构B/S 结构: 全称为 Browser/Server 结构, 是指浏览器和服务器结构. 常见浏览器有谷歌, 火狐等.两种架构各有优势, 但是无论哪种架构, 都离不开网络的支持. 网络编程, 就
原创
489阅读
0评论
2点赞
发布博客于 3 月前

Java基础 第四节 第十九课

打印流概述PrintStream 类构造方法改变打印流向概述平时我们在控制台打印输出, 是调用 print 方法和 println 方法完成的, 这两个方法都来自于java.io.PrintStream类. 该类能够方便地打印各种数据类型的值, 是一种便捷是输出方式.PrintStream 类构造方法public printStream(String fileName): 使用指定的文件名创建一个新的打印流…构造举例, 代码如下:PrintStream ps = new PrintStream
原创
372阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第四节 第十八课

序列化概述ObjectOutputStream 类构造方法序列化操作ObjectInputStream 类构造方法反序列化操作 (第一种)反序列化操作 (第二种)练习: 序列化集合案例分析案例实现Student 类测试类概述Java 提供了一种对象序列化的机制. 用一个字节序列可以表示一个对象, 该字节序列包含该对象的数据, 对象的类型和对象中存储的属性等信息. 字节序列写出到文件之后, 相当于文件中持久保存了一个对象的信息.反之, 该字节序列还可以从文件中读取回来. 重构对象, 对它进行反序列化.
原创
400阅读
0评论
1点赞
发布博客于 3 月前

Java基础 第四节 第十七课

转换流字符编码和字符集字符编码字符集ASCII 字符集ISO-8859-1 字符集GBxxx 字符集二级目录三级目录字符编码和字符集字符编码字符编码 Character Encoding: 就是一套自然语言的字符与二进制数之间的对应规则.计算机中存储的信息都是用二进制数表示的, 而我们在屏幕上看到是数字, 英文, 标点符号, 汉字等字符是二进制数转换之后的结果. 按照某种规则显示出来, 称为解码. 比如说, 按照 A 规则存储, 同样按照 A 规则 解析, 那么就能显示正确的文本符号. 反之, 按照
原创
305阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第四节 第十六课

缓冲流概述字节缓冲流构造方法效率测试基本流缓冲流优化字符缓冲流构造方法特有方法readLinenewLine练习: 文本排序分析代码展示概述我们已经学习了基本的一些流, 作为 IO 流的入门, 今天我们要见识一些更强大的流. 比如能够高效读写的缓冲流, 能够转换编码的转换流, 能够持久化存储对象的序列化流等等. 这些功能强大的流, 都是在基本的流对象基础之上创建而来的, 就像穿上铠甲的武士一样, 相当于是对基本流对象的一种增强.缓冲流, 也叫高效流. 是 4 个基本的 FileXxx 流的增强, 所以
原创
298阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第四节 第十课

综合案例文件搜做分析代码展示文件过滤器优化分析代码展示Lambda 优化分析代码展示文件搜做搜索 C:/Users/Windows/Desktop 中的 .java 文件.分析目录搜索, 无法判断多少级目录, 所以使用递归, 遍历所有目录遍历目录时, 获取的子文件, 通过文件名称, 判断是否符合条件代码展示import java.io.File;public class Test { public static void main(String[] args) {
原创
606阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第四节 第九课

递归概述递归累加求和分析代码展示代码执行图解递归求阶乘分析代码展示递归打印多级目录分析代码展示概述递归: 指在当前方法内调用自己的这种现象.递归的分类: 递归分为两种, 直接递归和间接递归:直接递归称为方法自身调用自己间接递归可以 A 方法调用 B 方法, B 方法调用 C 方法, C 方法调用 A 方法注意事项:递归一定要有条件限定, 保证递归能够停下来, 否则会发生栈内存溢出在递归中虽然有限定条件, 但是递归次数不能太多. 否则也会发生栈内存溢出构造方法, 禁止递归递归累加求
原创
321阅读
3评论
1点赞
发布博客于 3 月前

Java基础 第四节 第八课

File 类概述构造方法代码展示注意事项常用方法获取功能的方法代码展示绝对路径和相对路径代码展示判断功能的方法代码展示创建删除功能的方法代码展示目录的遍历概述java.io.File类是文件和目录路径名的抽象, 主要用于文件和目录的创建, 查找和删除等操作.构造方法public File(String pathname): 通过将给定的路径名字符串准换为抽象路径名来创建新的 File 实例public File(String parent, String child): 从父路径名字符串和子路
原创
306阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第四节 第七课

Lambda 练习练习: 使用 Lambda 标准格式 (无参无返回)题目解答Lambda 的参数和返回值传统写法代码分析Lambda 写法练习: 使用 Lambda 标准格式 (有参有返回)题目Lambda 省略格式可推导可省略省略规则练习: 使用 Lambda 省略格式题目解答Lambda 的使用前提练习: 使用 Lambda 标准格式 (无参无返回)题目给定一个厨子 Cook 接口, 内含唯一的抽象方法 makeFood, 且无参数, 无返回值. 如下:public class Test {
原创
279阅读
0评论
0点赞
发布博客于 3 月前

Java基础 第四节 第六课

Lambda 表达式函数式编程思想概述冗余的 Runnable 代码传统写法代码分析编程思想转换做什么, 而不是怎么做生活举例体验 Lambda 的更优写法回顾匿名内部类使用实现类使用匿名内部类匿名内部类的好处与弊端语义分析Lambda 标准格式函数式编程思想概述在数学中, 函数就是有输入量, 输出量的一套计算方案. 也就是 “拿什么东西做什么事情”. 相对而言, 面向对象过分强调 “必须通过对象的形式来做事情”, 而函数式思想则尽量忽略面向对象的复杂语法–强调什么做什么, 而不是以什么形式做.面向
原创
290阅读
3评论
1点赞
发布博客于 3 月前

Java基础 第四节 第五课

线程池线程池思想概述线程池概念线程池的使用创建线程池创建对象的步骤代码实现线程池思想概述我们使用线程的时候去创建一个线程, 这样实现起来非常简便, 但是就会有一个问题: 如果并发的线程数量很多, 并且每个线程都是执行一个时间很短的任务就结束了. 这样频繁创建计线程就会大大降低系统的效率, 因为频繁创建线程和销毁线程需要时间.那么有没有一种办法使得线程可以复用, 就是执行完一个任务, 并不被销毁, 而是可以继续执行其他任务>在 Java 中可以通过线程池来达到这样的效果. 今天我们就来详细讲解一
原创
313阅读
2评论
1点赞
发布博客于 3 月前

Java基础 第四节 第四课

等待唤醒机制线程间通信等待唤醒机制什么是等待唤醒机制等待唤醒中的方法总结生产者与消费者问题包子铺资源类吃货线程类包子铺线程类测试类线程间通信概念: 多个线程在处理同一个资源, 但是处理的动作 (线程的任务) 却不相同.比如: 线程 A 用来生成包子的, 线程 B 用来吃包子的. 包子可以理解为同一资源, 线程 A 与 线程 B 处理的动作. 一个是生产, 一个消费, 那么线程 A 与线程 B 之间就存在线程通信问题.为什么要处理线程间通信:多个线程并发执行时, 默认情况下 CPU 是随机切换线程
原创
288阅读
0评论
1点赞
发布博客于 4 月前

Java基础 第四节 第三课

线程状态概述Tiemed Waiting (计时等待)案例Timed Waiting 线程状态图Blocked (锁阻塞)Blocked 线程状态图Waiting (无限等待)Waiting 线程状态图补充知识点概述当线程被创建并启动以后, 它既不是一启动就进入执行状态, 也不是一直处于执行状态. 在线程的生命周期中, 有几种状态呢? 在 API 中java.lang.Thread.State这个枚举中给出了六种线程状态:线程状态导致状态发生条件NEW (新建)线程刚被创建, 但
原创
363阅读
1评论
1点赞
发布博客于 4 月前

Java基础 第四节 第二课

线程安全概述案例模拟票测试类线程同步同步代码块格式同步锁同步方法格式代码Lock 锁概述如果有过个线程在同时运行, 而这些线程可能会勇士运行这段代码. 程序每次运行结果和单线程运行的结果是一样的, 而其他的变量的值也和预期的是一样的, 就是线程安全的.案例我们通过一个案例, 演示线程的安全问题:电影院要卖票, 我们模拟电影院的卖过程. 假设要播放的电影是 “郭德纲和他嫂子的爱情故事”. 本次电影的座位共有 100 个. (本场电影只能卖 100 张票)我们来模拟电影院的售票窗口, 实现多个窗口同
原创
275阅读
3评论
1点赞
发布博客于 4 月前